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ABSTRACT

For the stability of agglomerates of micron sized particles it is of considerable

importance to study the effects of tangential forces on the contact of two particles.
If the particles can slide or roll easily over each other, fractal structures of these

agglomerates will not be stable. We use the description of contact forces by Johnson,

Kendall and Roberts, along with arguments based on the atomic structure of the
surfaces in contact, in order to calculate the resistance to rolling in such a contact.
It is shown that the contact reacts elastically to torque forces up to a critical bending

angle. Beyond that, irreversible rolling occurs. In the elastic regime, the moment

opposing the attempt to roll is proportional to the bending angle and to the pull-off
force Pc. Young's modulus of the involved materials has hardly any influence on

the results. We show that agglomerates of sub-micron sized particles will in general
be quite rigid and even long chains of particles cannot be bent easily. For very small

particles, the contact will rather break than allow for rolling. We further discuss

dynamic properties such as the possibility of vibrations in this degree of freedom
and the typical amount of rolling during a collision of two particles.

§ I. INTRODUCTION

The coagulation of small solid particles is a process of great importance in a wide

range of fields such as material sciences (sintering) atmospheric sciences (aerosols) and

also astrophysics (the formation of planets; see, for example, Weidenschilling, Donn

and Meakin (1988)). Many studies of coagulation have been carried out both on the

experimental side and on the theoretical side. Coagulated aggregates have structures

that vary from quite compact to open fractal. Numerical simulations and also theoretical

arguments (see, for example, Ball and Witten (1984)) have shown that the density of

aggregates reflects the formation process, in particular the type of trajectory of the

approaching particles (ballistic or random walk). A further important factor is the

difference between particle-cluster aggregation and cluster-cluster aggregation. In

particular, the addition of single particles to the cluster gives rise to quite compact

structures as compared to cluster-cluster aggregation.

However, examination of pictures of (especially low density) aggregates shows that

the stability of the adhesive joints is also an important factor for the structure (Kantor

and Witten 1984). Often, the aggregates consist mainly of quasi-linear chains of

particles with no more than two contacts per particle. Only strong joints can survive

collisions with further particles without tearing, and only if the joints can resist

tangential forces will the chains continue to be linear. If, for example, rolling of one

g_ainover the other were easy, the chains would quickly fold and the aggregates would

become considerably more compact.
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As far as the breaking of the aggregate is concerned, certainly the most important
parameter is the pull-off force

Pc = 3nyR, (1)

which is the force required to separate two spherical particles in an adhesive contact.

Here 2_ is the specific energy of adhesion for the two surfaces and 1/R = I/RL + 1/R2
is the reduced radius of the particles involved. The factor 3 is the value obtained from

the JKRS theory (see below). For very hard spheres, this factor should rather be 4

(Muller, Yushenko and Derjaguin 1982).

When the forces involved are not sufficiently large to destroy an aggregate, it is still

possible to deform it by bending the particle chains, rolling the spheres over each other

or sliding the surfaces along each other. The latter is not likely to be too important after

the formation of the aggregate, since the forces needed to break a contact by horizontal
forces are usually larger than the pull-off force (Savkoor 1992). However, what should

be much easier is bending these chains, and eventually moving the contacts by rolling
the particles over each other.

To get a handle on this, it is important to know which forces oppose the attempt
to roll one body over the other in an adhesive contact. In this paper, we will develop
a model which invokes both the properties of an adhesive contact between two elastic

spheres and, to some extent, the molecular structure of the surfaces in order to calculate

these forces and to estimate the energy dissipated in the rolling process.

§ 2. THE JKRS SOLUTION FOR THE CONTACT PROBLEM BETWEEN TWO

ADHESIVE SPHERES

Our considerations are based to a large extent on the solution of the adhesive contact

problem which was developed by Johnson, Kendal and Roberts ( 1971) (JKR) and also

by Sperling (1964). The JKRS solution is based on fracture-like energy considerations.

The main assumption leading to this solution is that the forces between the two spheres
are pure contact forces. That is, two grains feel only an attractive forces across the
contact area, while the surface areas outside the actual contact area are force-free.

Certainly, such an approximation has its limitation. It was shown by Muller, Yushenko

and Derjaguin (1979) that JKRS is more appropriate in the case of large soft spheres.

For small and very hard spheres, the description by Derjaguin, Muller and Toporov

(1975) is more accurate. We have decided to adopt JKRS for the time being, since the

assumption of contact forces considerably simplifies the discussion of rolling
resistance.

JKR showed that two elastic adhesive spheres make contact over a finite circular

region, as indicated in fig. 1. In the case of no external applied forces, the radius of this
contact area is

= (9_7R2_ 1/3
ao \_-] , (2)

where 7 is the surface energy of each surface. For different surfaces, ), = 7J + )'2 - 27_2,

where 7_ is the interface energy. R is the reduced radius of the two spheres
(R-1=R(I+R2 l) and (E*)-_=(I--v_)/El+(1-v_)/E2, where Ei and vi are

Young's modulus and Poisson's ratio, respectively, of grain i. The elastic displacement
of the two spheres along the line connecting the centres of the two spheres (again with
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Fig. 1
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Sketch of the geometry of the contact area between two elastic spheres. The two bodies make

contact overa circular region with radius a. Inside the contact region, the surfaces interact

by a mutual pressure p (which in adhesive contact can also be negative). When tangential

forces are applied, they are transmitted by tangential tractions q in the contact'area. The

contact area is always in the x-y plane.

zero external force) is given by

Pc
g0 - (3)

E*ao '

where -Pc = -3rt?R is the maximum external force that can be applied without

breaking the contact (the so-called pull-off force). In the following we will sometimes

use dimensionless quantities, denoted by a hat over a symbol:

P ¢_z 6z a
/5=p__,c =600' t_=--. (4)a0

Here P is the applied external load. When this load differs from zero, both the contact

radius and the displacement change. The following relations between load, displace-

ment and contact radius hold for the JKRS solution:

/D = 4(t_ 3 -- t_3/2), (5)

¢_= 34 2 - 2_ w2. (6)

The distribution of pressure in the contact area is given by a superposition of Hertz' s

and Boussineq's contact problems:

p(r, a) = pH(l -- r2/a 2) + pB(l -- r2/a 2) - 1/2. (7)

In JKRS, the two constants are given by

pH _- 6 P--_2d,
rCao

1/2

7r_2o

(8)

(9)
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§ 3. RESISTANCE TO ROLLING IN A JKRS CONTACT

Resistance to rolling is a force that opposes the attempt to roll a body on the surface

of another body. To measure this force we might apply a force Qx at the centre of a

sphere with radius R_ in the x direction parallel to surface on which the sphere rolls.

In order to study this effect independently of the sliding process, we assume that

sliding friction is high enough to prevent sliding entirely. Then, the tangential force Qx
is balanced by an equal force in the contact area. However, since the two forces are

applied at different points on the sphere, there is a resulting torque about the y axis
which is

Mr= QxR. (10)

In order to prevent the sphere from starting to roll, this torque has to be balanced by

an appropriate pressure distribution in the contact area. In order to produce a resultant
moment (the so-called rolling moment), the distribution would have to be asymmetric

with respect to the y axis. However, the pressure distribution in JKRS is always

cylindrically symmetric with respect to the contact point. Since this implies
p(x,y) = p(- x,y), there is no moment associated with this distribution:

My= f fxp(x,y)dxdy=O. (11)

Different mechanisms have been discussed in order to explain the observed rolling

friction at least in the adhesion-free problem. The different possibilities are micro-slip
at the interface, ineleastic deformation of the involved materials and surface

irregularities; these have been summarized by Johnson (1989). However, none of these
mechanisms should be of great importance in the contact of (sub-) micron-sized

particles, of which adhesive aggregates usually consist. The displacements at the

surfaces of the particle are usually not much larger than one or a few diameters of the
atoms in the solid. Therefore, the movement of dislocations, which for macroscopic

crystalline bodies is the source of inelastic behaviour, will play no role at very small
particle sizes. Likewise, surface roughness is unimportant on the 50/_ size scale of the

contact area of sub-micron-sized particles.

However, for very small spheres, the surfaces can no longer be treated as perfectly

smooth at all scales, since they are made of atoms. Then it becomes clear that the contact

area cannot be perfectly symmetric. During rolling, new contact at the leading edge of
the contact will not be made continuously, but rather in steps after a rolling distance

of approximately one grid constant of the material. Likewise, at the trailing edge, the
contact is lost in steps. Therefore the pressure distribution will not be exactly

symmetrical all the time.
Still, if new contacts at the leading edge are made very smoothly and if the processes

at the leading and trailing edges are exactly time reversed to each other, no energy will

be dissipated and the pressure distribution will still be symmetric on average. This

means that at every instant there may be a non-vanishing torque, but this torque may
change sign and the average will still be zero. However, it is known from experiments

with the atomic force microscope (Landman, Luedtke, Burnham and Colton 1990) that

the approach of a tip to an adhesive surface and subsequent retraction involves a

hysteresis. Upon close approach, the tip will form an adhesive contact with the substrate.

Upon retraction, however, the tip will pull out a neck of surface material and contact
will not be broken until a critical displacement is reached. A similar process occurs for

a single atom attracted by van der Waals forces to the substrate and held back by
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Sketch of the mechanism of rolling friction. Top: side-view on an elastic sphere in adhesive
contact with a rigid plane. Centre: top-view on the contact area. The dotted circle
indicates the position of the contact point (the projection of the sphere centre). From le_
to right, the diagram shows (a) an initial torque-free state with contact area centred
around the contact point, (b) a state with resulting torque where the contact area is not
centred and (c) the final and again torque-free state after the contact area has readjusted.
Bottom: decomposition of the asymmetric contact area into two half-circles of different
radii.

spring-like binding forces in the approaching tip (see, for example, the discussion in

Israelachvili (1992)). Upon approach, the atom will jump into contact with the substrate.
The energy difference between the two states before and after the jump is dissipated.

The same process occurs upon retraction between a different pair of states. It has been

suggested by Tom_inek (1993) that this hysteresis might be the source of atomic scale

rolling friction. In this paper, we follow up this idea and try to calculate the forces
involved.

A possible approach to calculate the rolling friction in an adhesive contact would

be to look directly at the energy dissipated in the making and breaking of contacts. This,

however, requires an accurate knowledge of the forces between the atoms and an

accurate description of the transition between the contact area itself and the surrounding

parts of the spheres.
We therefore follow a different approach. The retarded making and breaking of

contacts means that the contact area will not always be centred around the line

connecting the centres of the two spheres, but rather will be shifted by a certain amount

to one side. This shifted contact area leads to an asymmetric pressure distribution, as
we will show below.

For now we restrict out terminology to the case of a rolling elastic sphere on a rigid

plane. However, the case of two elastic spheres can be treated by simply replacing the

sphere radius R and the elastic constant E* with reduced quantities.
To describe the rolling process we visualize it as shown in fig. 2.

(1) We start from a situation where the contact is a JKRS contact centred around
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thecontact point which is the point vertically below the centre of the sphere.

With two spheres it would be the point on the line connecting the two centres.

(2) Then the sphere is rolled a small distance over the surface. If _y denotes the

angular motion, the contact point moves a distance _ = R6_y. However, we

assume that the contact area remains behind. Thus the contact area is no longer

centred around the actual contact point, but is shifted by a distance ¢. In this
state there will be a non-vanishing torque opposing the rolling direction. In § 3.1

we will calculate this torque.

(3) At a certain critical rolling distance 4Yield(which should be typically of the order

of one atom diameter in the material) the contact area readjusts--that is, contact

is lost at the trailing edge and new contact is formed at the leading edge--so

that again a symmetrical (torque-free) distribution is formed.

In the following we will calculate the moment that is produced by the asymmetric

pressure distribution.

3.1. The moment associated with a shifted contact area

To our knowledge, there are no analytical solutions for the problem of a shifted

contact area. To calculate the pressure distribution and the associated moment we

proceed as follows:

(1) The true shifted contact area is approximated by a decomposition into two half

circles of different radii a + 4, respectively (see fig. 2).
(2) The half circle x < 0 is one half of a symmetrical contact with contact radius

a + _ and pressure distributionp(r, a + _, 6z) (see below for the definition of this

pressure distribution).

(3) the half circle x > 0 has a smaller contact radius a - 4 and a corresponding

pressure distribution p(r, a - 4, 6z).
(4) The total momentum due to both half circles is calculated.

The resulting distribution is discontinuous at x = 0. As indicated in fig. 2, the true

contact area is closely fitted far from the y axis where the contributions to the moment

are most important. In Appendix 1 we discuss the two-dimensional (2D) case where
the exact pressure distribution can be obtained analytically. That analysis shows that

the above approximation gives reasonable results.

We start from the general pressure distribution for the contact of two elastic spheres

with a contact radius a. This pressure distribution is the superposition of the solutions

of the Hertz problem and of the Boussineq problem. The subscripts H and B indicate
that in the following:

pa (12)
p(r, a, t_z) = pH(1 - r21a2) 1/2 q_ ( 1 - r21a2)1/2"

The pressure distribution corresponds to a normal displacement of the spheres

_a

6z = 2_(Pn + 2pa). (13)

To calculate the moments of one half of the contact area for different sizes for the

contact area we cannot directly use the JKRS equations since the different contact radii

a always correspond to different values for 6z. For the intended calculation, however,
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we need contact areas of different sizes but with the same normal displacement 6z. We
have thus to start from eqn. (12).

For a contact area of a given size, the constant pH has the fixed value PH = 2aE*/rtR,

since it is this part of the solution that deforms the spherical surface to a fiat area.

Different values of 6z can be achieved by changing only the Boussineq part of the

solution. Therefore we will now replace the Boussineq constantpn with eqn. (13). Then,
we may keep 6z constant and change the size of the contact area.

An expression for pa can be obtained from eqn. (13):

E*
pB(a) = -- 6z -- ½PH(a). (14)

rta

We insert this into eqn. (12) and get

p(r, a, 6z) = PH( 1 -- r2/a 2) I/2 + (E*/lta)6: - pu/2 (15)
(1 - r2/a2) 1/2

As discussed above, we compose the asymmetric contact region of two halves. The

distribution inside each half is taken to be that of a symmetric pressure distribution with

contact radius a + _ and a -- _, respectively:

_p(r,a+_,fz), x<O,
p_(r,a,() = Lp(r,a- ¢,6_), x>0. (16)

The moment associated with this distribution is

My = xp(r,a + _, 6z)rdrd_0 + xp(r,a - 4, 6z)rdrd_o. (17)
J ru'2 - n/2

With x = rcos _9 we may carry out the _0 integration and find

fl _+_ f¢-_My = - 2 r2p(r, a + 4, 6z) dr + 2 r2p(r, a - 4, 6z) dr (18)

= _ /IAr(I/2) _£_ i,4"(I/2),,,y,_+ _ .... y.___. (19)

Thus we have to solve integrals of the kind

_v_'i(l_)y,._,o_"= 2 (r, d, _z) dr. (20)

The required integrals are given by eqns. (87) and (88) in Appendix B. The result is

E*
'",._'._A'r('/2)=2[PHl_C3+(_z_½Pn)¼_3 ] (21)

= ½E*d23z - _ pHd 3. (22)

We insert the correct value of PH (eqn. (8)):

M(U2) E* 2 "sJ4
_,_._ = T6_ - _e_ _. (23)

The moment of the whole asymmetric contact can now be calculated from eqn. (19).
We keep 6z constant and neglect all terms of higher than first order in 4/a. This is

equivalent to the substitutions d_ ¢4 _ -- 8a3_ and _2 ___ _ 4a_:
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My _ 2_( - E*a6z + 3pc_3). (24)

Now we may insert the correct value fiz which is the value from Johnson's solution

corresponding to a contact area radius a as given in eqn. (6). The result is

My = 4Pc_3a_. (25)

The moment associated with a contact area shifted by a distance _ is therefore

proportional to the pull-off force and to the shift itself. The order of magnitude of this
result is what one would have expected, since the forces involved are of the order of

Pc and the force is applied over a level of length ¢. The dependence on the normal load

P enters through the factor din, which should be close to one in most cases (see below).

In the following section we will discuss in greater detail the properties of the rolling

moment and its implications on the structure and stability of agglomerates.

§ 4. MECHANICAL PROPERTIES OF THE CONTACT UNDER THE INFLUENCE OF ROLLING

MOMENTS

4.1. Static considerations

Equation (25) shows that the force opposing the attempt to roll one particle over
the other is a torque that is proportional to the angular displacement. However, as the

displacement increases there is a limit to the increase in that force. When the line

connecting the two particle centres has moved a certain critical distance over the
surfaces, the contact area will start to move, and the force will decrease or drop to zero.

We will call this critical distance the yield displacement _yield = Rt_yaield. _yield should be
of the order of the distance between atoms in the materials, typically 2 ,_. Therefore,

the adhesive contact reacts elastically in a small displacement interval. For larger

displacements, energy is dissipated and the contact area moves irreversibly over the
surfaces.

Due to the simple structure of eqn. (25), the calculation of several mechanical

properties is quite straightforward. We will illustrate the results in some figures, which
show the involved forces and other quantities as functions of the surface energy ), and

of the particle radius R (see figs. 3 and 6).
For the following discussion we will restrict ourselves to the contact between

identical spheres with radius RI. Then, R = RI/2 and Pc = _r_TR_. Furthermore, we

neglect the variations in the rolling moment due to variations in the normal force. These
enter into eqn. (25) in the factor 63r2. However, if the normal force stays within the range

- Pc < P < Pc, the factor t_15 varies only in the range between 0.5-1.2. Larger normal

forces are likely to eventually destroy the contact, and are therefore not relevant to our

problem. Therefore, we assume for most of the rest of the paper that ,_ = 1.

Since we have neglected the normal load, the surface energy 7 is the sole material

property that enters into the equations. In the diagrams, we will therefore usually plot

on the abscissa. Every material or combination of materials may then be associated

with a position on this axis. We have plotted the positions of some materials on the top
of the diagrams. The material properties used are summarized in the table. The ordinate

of the plots is labelled by the reduced particle radius. Therefore, for a given system,

the results can be read immediately from the figures.

The first quantity of interest is the tangential force that can be applied at the centre

of the particles in order to exceed the yield displacement. In other words, to which

limiting force does the contact still react elastically? A force Qyield applied at the particle
centres, corresponds to an applied moment at the contact point of M yield ---- QyieldRl, thus
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Plots of some results for the adhesive contact of identical spheres in the 7-R_ plane. (a) The
pull-off force as calculated from JKRS (Pc = 3_xTR) (the labels marking the curves denote

logPc [N]), (b) the yield force required to initiate rolling (see text) normalized by the

pull-off force Qyieid/Pc, (c) the minimum radius of curvature ._,ni, [m] that can be applied

to a linear chain without leaving the elastic domain, and (d) the number Ngra_ of particles
that can be in a linear chain of particles in the earth's gravitational field without leaving

the elastic domain. Calculated for particles with a mass density of 2 gcm - 3.

or

Qyield = 6rtT_yi_]d ' (26)

Qyield _yield

= 4 . (27)
Pc Rt

The absolute force aYield needed to leave the elastic domain is independent of the

particle radius, while the force in units of the pull-off force is independent of the surface

energy 7. This behaviour is also reflected in the map of the normalized yield force in

fig. 3 (b). There it can be seen that for micron-sized or larger particles, the force required

to initiate rolling is much smaller than the pull-off force. Therefore, it should be quite

simple to roll particles of these sizes over each other, without immediately destroying

the contact. On the other hand, for very small grains, the force needed to initiate rolling

becomes comparable to the pull-off force. For particle radii of 1 nm, the forces would

even be the same--however, we have to bear in mind that at these sizes
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Materialproperties.

Material y_" (mJ m - 2) E (N m - 2) v p (g cm - 3) Reference

Polystyrene 12 3.4 (9) 0-5 1-04 [2, 3]
Quartz 25$ 5.4 (10) 0.17 2-6 [ 1,2]

Graphite 75 1.0 (I 0) 0-32 2-2 [4, 5]

Gold 790§ -- -- 19-3 [7]

Iron 3000 2-1 ( 11 ) 0-27 7-7 [2, 6]

t Surface energy per surface.

_tMeasured for micron-sized particles.

§ Mean value of the range given in the reference.

References; [1] Kendall, Alford and Birchall 1987, [2] Anderson 1981, [3] Kendall and

Padget 1987, [4] Brocklehurst 1977, [5] Zisman 1963, [6] Easterling and Th61en 1972,
[7] Hodgman 1949.

the theory of elasticity is no longer applicable. The fact that both forces are comparable

implies that any attempt to compress an aggregate by rolling the particles over each

other would be likely to destroy the aggregate.

Another interesting quantity is the flexibility of particle chains. Many open

aggregates mainly consist of quite linear chains in a tree-like structure. A way to treat

this problem is to calculate the minimal radius of curvature that a linear chain of particles

can adopt, again without leaving the elastic domain. If we bend every contact to its limit

(which is the angle _yield = 2_yield/gl), the radius of curvature of the chain is

_rnin _yield ' (28)

a result that is mapped in fig. 3 (c). The minimal radius of curvature is generally large

compared to the radius of the particles. Even for rather small spheres (100nm), the

minimal radius of curvature is about 50 _tm, thus a factor of 500 times larger. This means

that a chain would have to be a few thousand grains long in order to be elastically bent

to a circle. Chains shorter than this length would appear as quite rigid structures that

could not be reversibly bent. Because of this rigidity, fractal 'fingers' of aggregates do

not close up into ring-like structures easily.

In a laboratory, the aggregate is usually subjected to the earth's gravity. Another

interesting question is, therefore, whether an aggregate will collapse under its own

weight and flatten. We will restrict ourselves to a very simple consideration. We again

look at a linear chain of N particles bonded by adhesion and fixed at one end to the wall

(c.f. fig. 4). We make the further simplification that the chain is not bent, but assume

Fig. 4

mtj _ mg a_ mg mg a_

Experiment for the determination of the influence of the earth's gravitational field on the stability
of an aggregate.
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that it is a straight line. This is certainly justified by the above discussion of the radius
of curvature. We may then compute the torque that acts on the key contact of the chain

(which is the strongest torque anywhere in the chain). It is given by

M_aV(N) = mgRIN 2, (29)

where m is the mass of an individual particle, g is the gravitational acceleration and N

is the number of grains in the chain. Irreversible rolling occurs now when N > Ng ....
where

(97_Yie,a, ,n
Ngr.v= ' (30)

and p is the specific density of the grain material. We have calculated Ngrav for

p = 2g cm - 3 and plotted this in fig. 3. The results hardly depend on the density, since

Ngr_ scales only with the square root of p. It is obvious that for particles larger than

about 100 lain, even a gingle particle is heavy enough to start rolling under the earth's

gravity. However, with decreasing particle size, the number of grains that can be

supported increases rapidly. A chain of approximately one thousand 100 nm spheres
is still stable under the earth's gravity. A more careful analysis of the stability of tenuous

structures (not limited to straight chains of particles) was carried out by Kantor and

Witten (1984), using a parametrized strength of the contact. The size limits established

in their study are in good agreement with our results when appropriate estimates for

the contact strength are used.

4.2. Dynamic considerations

4.2.1. Vibrations

As already noted above, for small angular displacements the moment produced by

the displacement is proportional to the displacement itself. It should therefore be

possible to excite vibrations where two particles in contact oscillate around the

equilibrium state as shown in fig. 5 (b). Before we calculate the frequency associated

Fig. 5

(a) (b)

The two modes of vibration considered in § 5.2.1. (a) Vertical vibration: the vertical displacement
3z is oscillating, when the distance between the sphere centres increases and decreases;
(b) rolling vibration: the angular displacement 6ay oscillates, when the spheres roll back
and forth over each other.
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withtheseoscillations,wewill brieflydiscuss(asameansof comparison)adifferent
typeofvibrationinwhichtheparticlesoscillatealongthez axis as shown in fig. 5 (a).

If vz, and vz2 denote the velocities of the particles in the z direction (defined as

indicated in fig. 5), the equations of motion are

m,r)z, = P, (31)

m2f;z2 = - P. (32)

The change in the vertical displacement is given by 6z = Vz, - re2, thus

1
= t_zl - _z2 =--P, (33)

m

where m = (1/m, + l/m2)- 1 is the reduced mass of the particles. P is of course not a

linear function ofaz, but we can linearize it in the vicinity of the equilibrium point P = 0
(see also Th61en (1992)) and find

_z _ 6 E*ao 8z. (34)
5 m

The frequency of the vibrations is therefore given by

0 1(6 )o ,3,,
If we consider again identical spheres of radius Rt and density p and with
E* = El1(1 - v_), we find

[" E* ]["/3" ],/6/10-7m]T/6(2gcm 3],/2Q°_6.38 × (36)10s l0 1 2

Thus the frequencies are typically of the order of GHz, and almost independent of the

surface energy of the materials.

For the angular vibration we neglect all interactions with other degrees of vibration.
The equations of motion then become

mlk_lO)l = My(_y), (37)

m2_692 = - My( 6_,y), (38)

where o)i is the angular velocity of particle i about the y axis (as indicated in fig. (5))

and ki is the radius of gyration of the particle ((2/5) _r2times the radius for homogeneous

spheres). The time derivative of the angular deformation is given by e), - c0z, thus

_ar = (hi -- (D2 = + My = _ My

4P_R 6
- I "Y' (39)

where I is the reduced moment of momentum of the two spheres. Thus, the system

oscillates in this degree of freedom with an eigenfrequency of

0 1 (4PER) '/z_¢-_roll = _ -- • (40)
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Eigenfrequencies for the z vibration (a) and the rolling vibration (b) for two identical spheres

in contact, plotted as contour lines in a radius-surface tension diagram. The density of
the materials was assumed to be p = 2 g cm - 3. In (a) the quantity E_ (see text) was set

to 10]°Nm -2. The curves are labelled by log (frequency) in units of Hz.

Considering two identical homogeneous spheres with radii R_ and a mass density,

p, we have

R = Rl/2, kl = k2 = (2/5)l_R1, ml = m2 = (4/3)nR_p,

0_3/ _, '_'_

OroU- _ \5R-_p] (41)

7 _ 1ez 10_Tm 3tz 2gcm-3)_tz_4'77×10(100mJm-2) (---_---i) ( p (42)

These frequencies as functions of 7 and R1 are shown in fig. 6. The eigenfrequency

associated with the rolling motion is usually one to two orders of magnitude smaller

than the frequency of the vertical vibration.

4.2.2. Energy dissipation during rolling

The rolling vibration can only take place if the amplitude is small enough. For

amplitudes larger than a critical angle ,siYield= _yieldt'e, the spheres start rolling
_ty

irreversibly over each other. When we assume that after a rolling distance _y_ld the

contact area readjusts to a symmetric contact with zero torque, the average torque is

(owing to the linear dependence between torque and _)

(My) _ 2ec_ yield, (43)

which is equivalent to an average decelerating force applied at the centre of the rolling

sphere of

_yield

(Q.} _ 2P¢-- (44)
R
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Fig. 7

%
Experiment to show the amount of energy lost due to rolling friction. One of the two spheres

is fixed in an inertial system (hatched area). The other sphere is approaching with a kinetic
energy W0. Upon contact, the energy W0 is distributed between rotation and linear
movement. The moving sphere rolls over the fixed sphere until all energy is dissipated.

In order to visualize this energy loss we will calculate the number of full rotations

a sphere can roll with a given energy at the start. We consider a sphere colliding with

a fixed sphere (see fig. 7). We assume that sliding friction is strong enough to entirely

prevent sliding, so that the surfaces do not move relative to each other. Therefore, the
initial energy W0 is distributed into rolling and linear motion:

W0 = ½ml/) 2 "t- ½11(.D12. (45)

Since no sliding occurs, v l = m lR_. If we further observe that for a homogeneous sphere
__2 2

I- 3m_R_, we find that the rotation of the sphere just after contact is

(4wq''2
m(t = 0) = \7_-1/ " (46)

From then on the equation of motion m_ is given by

My
e)l -- Ii ' (47)

where My is given by eqn. (43). Integrating eqn. (47) we can find the time when the

rotation of the sphere stops, and calculate the number of rotations performed. The
result is

1 w0
nron- 14_ Pc_ yield" (48)

Thus, the number of rotations is proportional to the initial energy and inversely

proportional to the pull-off force. This seems to indicate that rolling is much more likely
in collisions between grains with a small pull-off force. However, it is also to be

recognized that grains with a small pull-off force will only stick at small impact
energies. We should therefore measure the energy W0 in units of an energy typical for

adhesion. Such an energy is given by Pc60. It has been shown by Chokshi, Tielens and

Hollenbach (1993) that this energy is of the order of the maximum energy that can be

dissipated in a slow collinear collision between two spheres, so that they will stick
together. Then, eqn. (48) becomes

nrou- 14(9r01/3 \_] _ p_ . (49)

Thus the material properties enter only in the form of the ratio E*I7 and we may

plot n_o_lin a map as shown in fig. 8. Even in a collision with relatively large energies
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Fig. 8
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(W0 _ P¢60), spheres with a large ratio E*/7 do not roll at all, if they are smaller than

about 10nm. Larger radii, smaller elastic moduli, or larger surface energies are
favourable to more rotation--however, the rotation is usually less than one complete

rotation if the radius of the spheres stays below 100 nm. For bigger spheres, it becomes
quite possible that rolling persists for a full rotation or more. This means that in a

collision, the contact would not remain at the point of first contact. Rather, the spheres

will roll over each other. If the fixed sphere is part of an aggregate, the mobile sphere

will probably roll until at least a second point of contact is established. Therefore, the

resulting aggregates will be considerably more compact.

§ 5. CONCLUSIONS

In this paper we have discussed the resistance of a JKRS contact to rolling. This

was done by recognizing that, due to the atomic structure of the surfaces on contact,

the contact area will not be symmetric around the contact point. This asymmetric contact

area leads to a net torque force opposing the attempt to roll one body over the other.
We have calculated the torque of the asymmetric contact area by an approximation in

which the area was divided into two half cycles of different size. This approximation

was justified by an exact solution for the two-dimensional case. However, it would be

very interesting to see an exact analytical solution for the three-dimensional case.

Since the maximum asymmetry of the contact area is given by the typical length

in the atomic grids of the bodies irreversible rolling starts only when the bodies roll at
least this critical distance. For smaller distances, the contact reacts elastically with a

force proportional to the displacement and to the pull-off force. As long as the contact

is not subjected to normal forces, the resistance to rolling is dependent on the surface

energy alone. Normal forces introduce a very weak dependence upon Young" s modulus.

We have also discussed some implications of our results, many of which should be

testable by experiments. The results indicate a critical bending angle below which the
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bendingwill beelastic.Thecriticalangleisquitesmall,sothatlonglinearchainsof

particles would appear rather rigid. We also showed that in the case of very small

particles the force needed to bend a chain can be comparable with the pull-off force.

Therefore, aggregates of very small grains would be very stiff. Forces applied to these

aggregates are likely to break them instead of deforming them considerably.

Finally we have shown that it should in principle be possible to excite vibrations
not only in the vertical degree of freedom, but also in the rolling degree of freedom.

This should be visible in vibrations of fractal aggregates as well.
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APPENDIX A

COMPARISON OF EXACT AND SIMPLIFIED CALCULATION OF THE ROLLING MOMENT OF AN

ASYMMETRIC ADHESION PROFILE

In this appendix we will calculate the pressure distribution and the associated rolling

moments of an elastic cylinder in contact with a rigid plane. In this 2D case, it is possible

to calculate the pressure distribution in an asymmetric contact analytically. This will

enable us to compare the rolling moment obtained from a simplifying assumption as
used in § 4.1 with an exact solution.

Although we here describe only a contact between an elastic cylinder and a rigid

plane, the results can be immediately generalized to the case of two elastic aligned
cylinders by just replacing the cylinder radius R and the elastic constant E* -- E/(1 - v2)
with reduced values. As usual, E is the elastic modulus of the material and v is the
Poisson's ratio.

Both the symmetric and the asymmetric contact are shown in fig. 9. Our treatment

of this 2D contact problem follows the description by Johnson (1989).

A. 1. The symmetric pressure distribution

When the cylinder is in contact with the plane, the deformation uz of the surface

of the cylinder is given by

X 2

uz(x)=fz 2R' -a<--x<--a (50)

Fig. 9

I t n o

i I I I

, ----_ _ ,,._--,I t

2a

Symmetric and asymmetric contact of a cylinder with a rigid plane.
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where we put the origin of the coordinate to the same x coordinate as the centre of the

cylinder. In the case of specified deformation in the loaded region, the pressure
distribution p(x, a) can be calculated from the following integral equation (see, for

example, Johnson (1989)):

a p(s,a) nE OUzds = . (51)
j__ x-s 2 ax

This is an integral equation of the type

a p(s,a) ds = (52)g(x).
-a X--S

The general solution of this equation can be obtained by applying the finite Hilbert
transformation which leads to

p(x, a) = rt2(a 2 - x2) 1/2 x - s

where C is some constant of integration. In the following we add a subscript s to the

pressure distribution in order to indicate that this is the symmetric case. The application

of eqn. (53) to eqn. (51) yields

• - ds , (54)
ps(x, a) = rt2(a2 _ x2)1/2 C1 + _ _ 2R x - s

E { 1 fa (a2-s2) 'n ]2R(aZ--xz)l/2 C2 +-_ -_s x-s ds . (55)

The integrand is singular at x = s and we have to take the Cauchy principal value, which

is given in eqn. (81). Inserting this result and rearranging yields

ps(x, a) = _ (a 2 -- x2) 1/2 + (C -- a2/2) (a 2 -x2)l n • (56)

The first part of the pressure distribution is the usual Hertz solution for two cylinders

pressed into contact. In this part of the solution the pressure falls to zero as x goes to
a. The second part which is proportional to 1/(a2-x2) 1/2 is the one-dimensional

equivalent to the solution of Boussineq's problem which shifts the contact area

vertically by a certain amount and forms the neck which is typical for adhesive contacts.
The total force per unit length P is:

foP = pdx, a) dx (57)
--a

E (a 2_x2)t n+ C-a212
- 2R _ ,, (a 2 _ x2)j n dx. (58)

With the integrals given in eqns. (84) and (83) this becomes

_E
P = _ C. (59)

The rolling moment M,. = fxp_(x, a)dx of this pressure distribution is of course zero.
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A.2. The asymmetric pressure distribution

We now consider a contact where the contact region is of the same size as in the

symmetric case, but is shifted with respect to the centre of the cylinder by an amount

4 (see fig. 9). Then, the deformation again follows eqn. (50) but the contact strip is a
shifted interval:

x2
Uz(X)=fz 2R' -a-4<--x<-a-4. (60)

For the calculation of the pressure distribution it is convenient to have the contact

area symmetric about the origin. In order to do so we introduce the variable

X=x+ _. (61)

Then the deformation can be written as

(x- 4)2
uz(X)=Sz 2R ' -a<--X<--a, (62)

Introducing this result into eqn. (51) yields for the asymmetric pressure distribution
pa(X, a)

E [ 4_Lfa s(a_2___s2)l/2 _fa (a2s2)1/2 ]pa(X, a) = 2R(a 2 X2)1/2 C- _ )__ X - s ds - - _---_ dsJ. (63)

With eqns. (81) and (82) this can be written as

1o,= [,a2x2),2+(c a +2 x2),,2] (64)

Thus the pressure distribution differs from the symmetric one only by an additional term

which is proportional to X and, therefore, not symmetric. As we will see, this term is

responsible for the moment associated with this pressure distribution.

The total force associated with this distribution is again (see eqn. (57))

1rE
P = -- C (65)

2R

and the rolling moment about the y axis which intersects the x axis at X = 0 is
given by

a
MXy=o = Xpa(X, a) dX (66)

--a

E f_a4 X 22R (a 2 _ X2)I n dX (67)

rca2 E

- _- 4. (68)
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We still have to transform this result back in the original coordinate system. The moment

about the y axis that intersects the x axis at x -- 0 can be calculated by

MX=_ = x=oy My -- _P, (69)

and thus

M_,_o rt E 2
_ _(a + 2C). (70)4

This is the exact result which we will compare with the approximate calculation

performed in the following section.

A.3. Simplified calculation of the rolling moment
The moment of the asymmetric distribution can also be approximately calculated

in the following way. We assume that the x < 0 half of the contact area has a pressure

distribution equal to the symmetric distributionpdx, a + ¢) with contact strip half-width

a + _, while the x > 0 part of the contact area has a distribution equal to a symmetric

distribution pdx, a - _), thus with respect to a contact half-width of a - _. The overall

distribution calculated in this way is therefore not continuous at x = 0.
The moment associated with this distribution is

f0 fMy = xp_(x,a + _)dx + xpdx, a - _)dx (71)
a _ 1

+ fl-= - xp_(x, a + _) dx + xps(x, a - _) dx (72)

(1/2) (1/2)

=-My.,,+¢+M,,_ _. (73)

Thus we have to solve integrals of the kind

11/2, fti_Jxp_(x,_/)dxMy,._e = (74)

The required integrals are given in eqns. (85) and (86). The result is

aA,I/2) E ( _q-/3)=__'" ,..u 2R 6 + C_¢1 . (76)

The total moment is now

M, = - .,_/(1/2) ]ldt(I/2)...,,.. + ¢ + ¢, (77)

which, to first order in E/a, is

1E 2
My _ _ R _(a - 2C). (78)

Comparing this result to eqn. (70), we can see that eqn. (78) is smaller by a factor

rt/2, but otherwise reproduces correctly the dependencies upon the properties of the

cylinder and upon the displacement _. This seems to be a very satisfactory result. It

justifies the use of the approximate calculation of the rolling moment.
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APPENDIX B
INTEGRALS USED

The following integrals have been used in the paper. We write them in terms of two
abbreviations:

Wl(r, a) = (a 2 -- X2) 1_, (79)

W2(r, a) = ( 1 - r2/a2) lr2. (80)

B.1. Cauchy principal values of some singular integrals important in the

two-dimensional problem

P.V. f_ s(a2 - s2)t/2 ds = n(x 2 - ½a2),
-a X--S

a (a 2_s2)u2P.V. ds = _x.
a X--S

(81)

(82)

B.2. Non-singular integrals

a 1 dx 7z, (83)
-- =

-_ Wl(r,a)

a Wl(r,a)dx = ½_xa2, (84)
-a

orXWl(r, a) dx = _a 3, (85)

Wl(r,a) dx = a, (86)

" _ 7_ 3rZW2(r,a)dr - _a , (87)

fl j r2aidr r_ 3W2(r, = _ a. (88)
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